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Abstract

We show that the Born-Infeld theory with n complex abelian gauge

fields written in an auxiliary field formulation has a U(n, n) duality

group. We conjecture the form of the Lagrangian obtained by elim-

inating the auxiliary fields and then introduce a new reality struc-

ture leading to a Born-Infeld theory with n real gauge fields and an

Sp(2n, IR) duality symmetry. The real and complex constructions are

extended to arbitrary even dimensions. The maximal noncompact

duality group is U(n, n) for complex fields. For real fields the duality

group is Sp(2n, IR) if half of the dimension of space-time is even and

O(n, n) if it is odd. We also discuss duality under the maximal com-

pact subgroup, which is the self-duality group of the theory obtained

by fixing the expectation value of a scalar field. Supersymmetric ver-

sions of self-dual theories in four dimensions are also discussed.
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1 Introduction

Shortly after the appearance of duality in extended supergravity [1, 2] the

theory of duality invariance of theories with abelian gauge fields was devel-

oped in [3, 4]. However, there are very few examples of duality invariant

interacting gauge theories where the Lagrangian is known in closed form.

The most famous is the Born-Infeld theory [5, 6, 7, 8, 9, 10] and in this

paper we study its generalization to more than one abelian gauge field.

In Section 2 we present in some detail the theory of duality invariance for

a theory of complex gauge fields with holomorphic duality transformations.

This is an extension of the theory of duality invariance developed in [3, 4]

and was briefly discussed in [11]. However, the duality group can be larger

than that presented in [11]. In fact, for a gauge theory with n complex gauge

fields the largest possible duality group is U(n, n). We also discuss how to

obtain such a theory from a theory with a U(n)×U(n) duality group, which

is the maximal compact subgroup of U(n, n), by introducing an additional

n-dimensional matrix valued scalar field.

In Section 3 we describe the Born-Infeld Lagrangian introduced in [11]

and written in terms of auxiliary fields. Its form is closely related to the

Lagrangian introduced in [12, 13] but differs in two ways. We use a different

reality structure for our fields and introduce a dynamical scalar field such

that the duality group is extended to a noncompact group.

In Section 4 we discuss the elimination of the auxiliary fields. We have

not been able to solve analytically the nonlinear matrix equations obtained

from the variation of the auxiliary fields. However we have calculated the

first few terms in the perturbative expansion of the Lagrangian in the field

strength and based on these we have conjectured in [11] the form of the

Lagrangian to all orders. In [11] the conjecture was checked by hand up to

the sixth order. It has now been checked by computer up to the seventeenth

order. In Appendix A we discuss an equivalent perturbative expansion of the

Lagrangian which simplifies the order by order check of the conjecture.

In the theory with auxiliary fields it does not seem possible to work with
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real gauge fields, but this can be done in the Lagrangian with the auxiliary

fields eliminated. As will be shown in Section 5 this leads to a Born-Infeld

theory with an Sp(2n, IR) duality group. Assuming that the conjecture of

Section 4 is correct, this would be the first example of an interacting gauge

theory whose Lagrangian is known to all orders and whose duality group is

as large as the duality group of the Maxwell theory with the same number

of gauge fields.

In Section 6 we show how to supersymmetrize the Born-Infeld Lagrangian

in the formulation with auxiliary fields. We also present the form without

auxiliary fields of the supersymmetric Born-Infeld Lagrangian with a single

gauge field and a scalar field; this theory is invariant under SL(2, IR) duality,

which reduces to U(1) duality if the value of the scalar field is suitably fixed.

Versions of this theory without the scalar field were presented in [14, 15, 16].

In Section 7 we generalize our construction to arbitrary even dimensions

by using antisymmetric tensor fields such that the rank of their field strength

equals half the dimension of space-time. We consider first theories with a

U(n, n) duality group using complex antisymmetric tensor fields; then we dis-

cuss theories with real antisymmetric tensor fields. These have an Sp(2n, IR)

duality group if half of the space-time dimension is even and O(n, n) if it

is odd. The fact that the duality group depends on half the dimension of

space-time was discussed earlier in [17, 18, 19, 20, 21].

Finally in Appendix B we briefly discuss two parametrizations of the coset

space U(n, n)/U(n) × U(n) and show how the left multiplication on U(n, n)

induces fractional transformations in one of the parametrizations. We also

discuss the corresponding coset spaces of the symplectic and orthogonal group

and describe their global structure.

2 Duality Invariance

In this section we describe how the theory of self-duality introduced in [3, 4]

is modified when we consider complex abelian gauge fields. We only consider

a linear action of the duality group which mixes the field strengths and
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their duals but not their complex conjugates. We will refer to this as a

holomorphic action. Under these conditions the largest allowed duality group

is U(n, n) where n is the number of complex gauge fields. If we do not require

a holomorphic action, n complex gauge fields are equivalent to 2n real gauge

fields in which case the largest possible duality group is Sp(4n, IR). Later, in

Section 5, we will also introduce a Born-Infeld action with real gauge fields

which we conjecture to have the largest allowed duality group given the

number of gauge fields. However, the argument leading to this conjecture

involves Lagrangians with complex gauge fields.

Consider a theory of n complex abelian gauge fields and a scalar field

S which is an n-dimensional complex matrix. Here we do not require S

to be symmetric and as a result we find a larger duality group than the one

appearing in [11]. The gauge fields only enter in the Lagrangian through their

field strengths F a, where a = 1, . . . , n, and their complex conjugates F̄ a

L = L(F a, F̄ a, S, . . .) . (1)

The dots in (1) represent possible auxiliary fields which could also be present

in L. As we will show later, with the scalar field S present the duality

group is noncompact while without the scalar field only the maximal compact

subgroup survives. We can also add to this Lagrangian a kinetic term for

the scalar field S. As explained in [3] additional physical fields, e.g. spinors,

can also be introduced, but we shall not consider them explicitly in this

paper except in Section 6 where the supersymmetric Born-Infeld theory is

discussed.

The dual field strength, or rather the Hodge dual of the dual field strength,

G̃a
µν = 1

2
εµνρσGa ρσ, is defined as

G̃a
µν ≡ 2

∂L

∂F̄ a µν
, ˜̄G

a

µν ≡ 2
∂L

∂F a µν
. (2)

Throughout this paper we will assume that we are in four space-time dimen-

sions, except in Section 7, where we will show how to generalize our results

to theories in even space-time dimensions.
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The equations of motion and Bianchi identities transform covariantly un-

der the following holomorphic infinitesimal transformations

δ


 G

F


 =


 A B

C D




 G

F


 . (3)

Let φ denote all the scalar fields appearing in the Lagrangian and φµ = ∂µφ .

The infinitesimal transformations of the scalar fields are given by

δφi = ξi(φ) , (4)

where ξi are components of a vector field on the scalar field space. The

most general Lagrangian, neglecting possible fermionic fields, has the form

L(F, F̄ , φ, φµ) . Its variation under (3)(4) can be written as

δL =

[
δφ + (GCT + FDT )

∂

∂F
+ (ḠC† + F̄D†)

∂

∂F̄

]
L ,

where δφ L is given by

δφ L = (ξi ∂

∂φi
+ φj

µ

∂ξi

∂φj

∂

∂φi
µ

) L .

The variation of the Lagrangian must satisfy certain consistency conditions.

First note that

∂

∂F
(δL) = δ

(
∂L

∂F

)
+

∂G

∂F
CT ∂L

∂F
+ DT ∂L

∂F
+

∂Ḡ

∂F
C† ∂L

∂F̄
.

Using (2) we obtain

δ ˜̄G = 2
∂

∂F
(δL) − Ḡ C

∂G̃

∂F
− ∂Ḡ

∂F
C† G̃ − ˜̄G D , (5)

and this should be consistent with the variation obtained from (3)

δ ˜̄G = ˜̄GA† + ˜̄F B† . (6)

Equating (5) and (6) we obtain the consistency condition

∂

∂F

(
δL − 1

4
Ḡ(C† + C)G̃ − 1

4
F̄ (B† + B)F̃

)
= (7)

∂L

∂F
(D + A†) +

1

4
Ḡ(C − C†)

∂G̃

∂F
− 1

4

∂Ḡ

∂F
(C − C†)G +

1

4
˜̄F (B† − B) .
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The right hand side of the above equation must be a total derivative since

the left hand side is one. This is possible if

A† + D = εI , B† = B , C† = C ,

where ε is a real parameter. These are the relations of the fundamental

representation of the U(n, n) × IR⋆ Lie algebraa. We will only consider the

case when ε vanishes. Thus we assume

A† = −D , B† = B , C† = C . (8)

The relations (8) define the fundamental representation of the Lie algebra

of U(n, n). However, in general the transformations (4) of the scalar fields

can be implemented only for a subgroup H of U(n, n). The duality group H

depends both on the field content and the nature of the interactions of the

scalar fields.

Using (8) the consistency condition (7) can be written as

∂

∂F

(
δL − 1

2
F̄BF̃ − 1

2
ḠCG̃

)
= 0 . (9)

Another consistency condition is obtained by applying the Euler operator

∂

∂φi
− ∂µ

∂

∂φi
µ

on the variation of the Lagrangian. Similarly to a derivation in [3], and

assuming (8) we obtain

(
∂

∂φi
− ∂µ

∂

∂φi
µ

)(
δL − 1

2
F̄BF̃ − 1

2
ḠCG̃

)
= δEi +

∂ξj

∂φi
Ej , (10)

where Ei is the left hand side of the equation of motion for the field φi

Ei =
∂L

∂φi
− ∂µ

∂L

∂φi
µ

.

aIR⋆ denotes the group of nonvanishing real numbers.
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A sufficient condition to satisfy the consistency equation (9) is given by

δL =
1

2
(F̄BF̃ + ḠCG̃) . (11)

This is equivalent to the invariance of the following combination

L − 1

4
F̄ G̃ − 1

4
F ˜̄G . (12)

Using (11) in (10) we obtain

δEi = −∂ξj

∂φi
Ej , (13)

showing that the equations of motion for the scalar fields form a multiplet

under the duality group H . In the examples discussed in this paper the

duality group will be U(n, n) for complex gauge fields and Sp(2n, IR) for real

gauge fields. Ignoring a possible IR⋆ factor, present only for a nonvanishing

ε, we will refer to these as the maximal noncompact duality groups.

The corresponding finite duality transformations are given by

 G′

F ′


 = M


 G

F


 . (14)

Here M is an U(n, n) matrix satisfying

M † IK M = IK , (15)

where M and IK have the block form

M =


 a b

c d


 , IK =


 0 1

−1 0


 .

Note that the invariant IK defining U(n, n) is the usual off diagonal symplectic

form. This explains the similarity of our results with the real case discussed

in [3]. One can check that (15) implies the following relations for the block

components of M

c†a = a†c , b†d = d†b , d†a − b†c = 1 . (16)
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The infinitesimal relations (8) can be obtained from the finite relations (16)

using

a ≈ 1 + A , b ≈ B , c ≈ C , d ≈ 1 + D .

In much of this paper we consider Lagrangians which do not depend on the

scalar field S, i.e. they depend only on the gauge field strengths and perhaps

auxiliary scalar fields, and are invariant only under the maximal compact

subgroup U(n)×U(n) of U(n, n). Then there is a way to introduce the scalar

field S which extends the duality group to U(n, n). The maximal compact

subgroup U(n)×U(n) is the subgroup of U(n, n) obtained by requiring (16)

and

a = d , b = −c .

The corresponding infinitesimal relations are (8) and

A = D , B = −C .

Let L(F, F̄ ) be a Lagrangian describing a theory invariant under U(n)×U(n),

where we suppress the dependence on the auxiliary fields. Then we define a

new Lagrangian

L(F, F̄ , S1, R, R†) ≡ L(RF, F̄R†) +
1

2
Tr(S1F̃ F̄ ) , (17)

where S1 is a hermitian n-dimensional matrix and R is a nondegenerate

n-dimensional matrix. This Lagrangian describes a theory invariant under

U(n, n) if we transform the scalar fields S1 and R as discussed below. As we

will see, the duality invariance of the theory described by L implies that L

depends on R and R† only through the hermitian positive definite matrix

S2 = R†R . (18)

We also define S ≡ S1 + iS2. Under the duality group S transforms by

fractional transformation

S ′ = (aS + b)(cS + d)−1 , (19)
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whose infinitesimal form is

δS = B + AS − SD − SCS . (20)

It is also convenient to write down the transformation of S2

S ′
2 = (cS + d)−†S2(cS + d)−1 . (21)

In (21) and below we use the notation −† for the hermitian conjugate of the

inverse.

Next we show that the Lagrangian L defined in (17) corresponds to a

U(n, n) duality invariant theory. We follow closely [21] where the case of real

gauge fields was considered. The proof in [21] generalizes the introduction of

a single complex scalar field for a U(1) interacting theory discussed in [9, 10].

Using the fact that L(F, F̄ ) satisfies (11) with compact duality rotations we

have

ḠaG̃b + F̄ aF̃ b = 0 , (22)

ḠaF̃ b − F̄ aG̃b = 0 . (23)

The relation (22) corresponds to transformations with A = 0 while (23) is

obtained by setting C = 0. We now introduce some convenient notation

F = RF , ˜̄G = 2
∂L(F , F̄)

∂F . (24)

Given a Lagrangian L which depends on F but not its derivatives, we may

rewrite (22) and (23) as

ḠaG̃b + F̄aF̃ b = 0 , (25)

ḠaF̃ b − F̄aG̃b = 0 . (26)

We would like to show that under an infinitesimal U(n, n) duality transfor-

mation the change in the Lagrangian L defined in (17) satisfies the duality

condition (11)

(δF + δF̄ + δS1
+ δR + δR†)L =

1

2
(F̄BF̃ + ḠCG̃) . (27)
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A transformation law for R which is consistent with the relation R†R = S2

and the duality transformation (21) of S2 is given by

R′ = R(cS + d)−1,

whose infinitesimal transformation is δR = −R(CS + D) . This choice is

somewhat arbitrary since equation (23) is equivalent to the Lagrangian L
being invariant under left multiplication of the gauge field strength by unitary

matrices U

L(UF, F̄U †) = L(F, F̄ ) .

This ensures that left multiplication of R by a unitary matrix leaves the

Lagrangian L invariant. It follows that the Lagrangian L only depends on

S2 and not on the specific R chosenb, as we have already mentioned. Any

variation of the form δR = ΩR − R(CS + D), where Ω is anti-hermitian,

would still preserve the relation R†R = S2.

Using the above transformation of R one can show that (27) is equivalent

to the vanishing of the following expression

G̃aḠb − G̃a(F̄ S1)
b − (S1F̃ )aḠb + (S1F̃ )a(F̄ S1)

b + (S2F̃ )a(F̄ S2)
b+

−i
(
(S2F̃ )aḠb − (S2F̃ )a(F̄ S1)

b − G̃a(F̄ S2)
b + (S1F̃ )a(F̄ S2)

b
)

.

Using the relation G = R−†(G − S1F ), which follows from (2) and (24), the

first and second lines of this expression are equivalent to the left hand side

of (25) and (26) respectively. Thus (27) is satisfied concluding the proof that

the theory with the Lagrangian L is invariant under U(n, n).

Conversely, if we are given a Lagrangian L with equations of motion

invariant under U(n, n) we can obtain a theory without the scalar field S

by setting S = i. Then the duality group is broken to the stability group

of S = i which is U(n) × U(n), the maximal compact subgroup. Thus we

can easily move between the theory with a scalar field S and the theory

without S.
bNote that S2 is a positive definite hermitian metric and R is a vielbein. The Lagrangian

only depends on the metric and the arbitrariness in the choice of vielbein introduces a U(n)

gauge invariance.
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We also give the infinitesimal transformation of F and G

δG = RCR†G − iRCR†F , (28)

δF = −RCR†F − iRCR†G .

The last term in (28) is a unitary transformation and could be canceled

by using a different choice for the transformation of R. The first term is

an infinitesimal duality transformation belonging to the maximal compact

subgroup U(n) × U(n). Note however that it is a space-time dependent

duality transformation.

Next we find the differential equation that a Lagrangian must satisfy if the

equations of motion are invariant under the maximal compact duality group.

We are therefore considering a Lagrangian without the scalar field S. We will

also assume that the auxiliary fields have been eliminated, the field strengths

appear in the Lagrangian only through the Lorentz invariant combinations

αab ≡ 1

2
F aF̄ b, βab ≡ 1

2
F̃ aF̄ b, (29)

and that the Lagrangian is a sum of traces (or of products of traces) of

monomials in α and β. If the Lagrangian has such a form, equation (23) is

satisfied. Then under a compact duality transformation the variation of the

Lagrangian is

δL = Tr(Lαδα + Lβδβ) ,

where we define

Lα ≡ ∂L
∂αT

, Lβ ≡ ∂L
∂βT

.

Using the definitions (2) and (29), we find that (22) is equivalent to

LββLβ −LαβLα + LααLβ + LβαLα + β = 0 . (30)

This is a generalization of the differential equation introduced in [10] where

the case of a single real gauge field was considered. Equation (30) is invariant

under the following transformation

α′ = α , (31)

β ′ = −β .
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If one considers a self-dual theory with n real field strengths FR, where

now α and β are defined by αab = 1/4 F a
RF b

R and βab = 1/4 F a
RF̃ b

R, equa-

tion (30) still holds. In this case one can extend the duality group from U(n)

to Sp(2n, IR) by introducing scalar fields as in [21]. Although these remarks

will be central in later arguments, their proofs closely resemble those in the

case of complex fields, so we omit them.

3 Born-Infeld with Auxiliary Fields

In this section we describe a U(n, n) duality invariant nonlinear gauge theory

with n complex gauge fields [11]. The use of auxiliary fields in the Lagrangian

is inspired by the work of [12, 13] and simplifies the check of duality invari-

ance.

We begin with the following Lagrangian introduced in [11]

L = Re Tr [ i(λ − S)χ − i

2
λχS2χ

† + iλN ] , (32)

where N = α − iβ . As mentioned in Section 2, here we do not require S

to be symmetric. The auxiliary fields χ and λ are n dimensional complex

matrices. If we could solve their equations of motion and use the solution in

the Lagrangian (32) we would find a Lagrangian which depends only on α,

β and S. Obtaining this Lagrangian is the main thrust of our paper.

If we set S = i in the above Lagrangian, the theory is only self-dual

under the maximal compact subgroup U(n)×U(n), as discussed in Section 2.

However, if we now reintroduce the scalar field as in (17), the new Lagrangian

is the same as (32) only after field redefinitions of χ and λ. We can also add

a kinetic term for the scalar field S. This term must be duality invariant

since, as we will see shortly, the rest of the Lagrangian already satisfies the

self-duality condition (11). For example we can add a nonlinear σ-model

Lagrangian defined on the coset space U(n, n)/U(n) ×U(n) with the metric

given by

Tr
[
(S† − S)−1dS†(S − S†)−1dS

]
. (33)
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The metric (33) is Kähler since it is obtained from the Kähler potential

K = Tr ln(S2) . (34)

This Kähler potential changes by a Kähler transformation under (20); this

ensures that the metric is duality invariant.

It will be convenient to decompose the auxiliary fields into hermitian

matrices, as we have already done for S,

S = S1 + iS2 , λ = λ1 + iλ2 , χ = χ1 + iχ2 .

To prove the duality of (32) we first note that the last term in the La-

grangian can be written as

Re Tr [ iλ(α − iβ) ] = Tr(−λ2α + λ1β) .

If the field λ transforms by fractional transformation and the λi’s and the

gauge fields are real this is the U(1)n Maxwell action, with the gauge fields

interacting with the scalar field λ, and this term by itself has the correct

transformation properties under the duality group [3]. Similarly for hermitian

α, β and λi this term by itself satisfies equation (11). It follows that the rest

of the Lagrangian must be duality invariant. The duality transformations of

the scalar and auxiliary fields are

S ′ = (aS + b)(cS + d)−1, (35)

λ′ = (aλ + b)(cλ + d)−1, (36)

χ′ = (cλ + d)χ(cS† + d)†. (37)

To show the invariance of Tr[i(λ − S)χ] it is convenient to rewrite (35) as

S ′ = (cS† + d)−†(aS† + b)†.

The proof of invariance of the remaining term which can be written as

Re Tr [− i

2
λχS2χ

†] = Tr [
1

2
λ2χS2χ

†] ,

12



is straightforward using the following transformations obtained from (35),

(36) and (37)

S ′
2 = (cS† + d)−†S2(cS

† + d)−1,

λ′
2 = (cλ + d)−†λ2(cλ + d)−1, (38)

χ′† = (cS† + d)χ†(cλ + d)† .

The Lagrangian has also a discrete parity symmetry which acts on the

fields as

α′ = ᾱ ,

β ′ = −β̄ ,

S ′ = −S̄ , (39)

χ′ = χ̄ ,

λ′ = −λ̄ .

Although the theory of duality invariance presented in the previous sec-

tion guarantees that this theory is self-dual, one can also check directly that

the equations of motion obtained by varying the auxiliary fields are preserved

under duality rotations. These equations of motion are

Lλ ≡ ∂L

∂λT
= i(χ − 1

2
χS2χ

† + α − iβ) = 0 , (40)

Lχ ≡ ∂L

∂χT
= i(λ − S − iS2χ

†λ2) = 0 , (41)

and indeed these two equations form a multiplet under duality transforma-

tions. Using the explicit forms (40) and (41) one can check that

δLλ = (Cλ + D)Lλ + Lλ(λC + D†) + χLχC ,

δLχ = −(SC + D†)Lχ − Lχ(Cλ + D) .

Alternatively, one can obtain these equations directly from (13).
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4 Elimination of the Auxiliary Fields

In this section we study the equation of motion (40) and attempt to solve

for χ. We conjecture the form the Lagrangian assumes after the elimination

of the auxiliary fields. This form is a generalization of the well-known Born-

Infeld Lagrangian to more than one gauge field.

Using the equation of motion (40) in the Lagrangian (32) we obtain

L = Re Tr [−iSχ] = Tr [ S2χ1 + S1χ2 ] , (42)

where χ is now a function of α, β and S2 that solves (40). For n = 1 we have

to solve a second order algebraic equation and we obtain

χ =
1 −

√
1 + 2S2α − S2

2β
2

S2
+ iβ .

Apart from the fact that the gauge fields are complex the result is the Born-

Infeld Lagrangian

L = 1 −
√

1 + 2S2α − S2
2β

2 + S1β . (43)

In fact, for n = 1 we could have taken the gauge fields to be real even in the

formulation with auxiliary fields as in [13], in which case the duality group

becomes the Sp(2, IR) subgroup of U(1, 1) obtained by requiring a, b, c and

d to satisfy (16) and to be real.

We now study equation (40) for arbitrary n. First notice that (40) can

be simplified with the following field redefinitions

χ̂ = RχR† ,

α̂ = RαR† , (44)

β̂ = RβR† ,

where, as in (18), R†R = S2. The equation of motion for χ is then equivalent

to

χ̂ − 1

2
χ̂χ̂† + α̂ − iβ̂ = 0 . (45)
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Breaking this equation into its hermitian and antihermitian parts we find

χ̂2 = β̂ , (46)

χ̂1 =
1

2
(χ̂2

1 − 2α̂ + β̂2 + i[β̂, χ̂1]) . (47)

It is convenient to define

X = 1 − χ̂1 .

Then (47) is equivalent to the quadratic equation for the hermitian matrix X

X2 = 1 + 2α̂ − β̂2 + i[β̂, X] . (48)

In terms of X the Lagrangian (32) takes the form

L = Tr [ 1 − X + S1β] , (49)

where here X is now a function of α̂ and β̂ that satisfies (48).

For n = 1 the equation (48) can be solved trivially since it is a second

order algebraic equation. For arbitrary n, it becomes a matrix equations

whose closed form solution does not seem to be known. However we solved

for X as a power series in α̂ and β̂

X =
∑

m≥0

1

m!
Xm . (50)

Here m refers to the combined power of α̂ and β̂ in each term. Then X can

be solved perturbatively using the recursion relation obtained from (48)

X0 = 1 , X1 = α̂ , X2 = −α̂2 − β̂2 + i[β̂, α̂] ,

∀ m > 2 , 2Xm = −
m−1∑

j=1



m

j



XjXm−j + i m [β̂, Xm−1] . (51)

The initial condition for the recursion relation X0 = 1 guarantees that the

Lagrangian has a physical weak field limit. We have not been able to solve

explicitly the recursion relation (51) and obtain X to all orders. However, to

obtain the action only Tr [X] is needed.
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It was conjectured in [11] and checked up to the sixth order that inserting

the solution of (48) into (32) gives the following Lagrangian

L = Tr [ 1 − S
α̂,β̂

√
1 + 2α̂ − β̂2 + S1β ] . (52)

The square root is to be understood in terms of its power series expansion.

The symmetrizer S
α̂,β̂

acts by symmetrizing each monomial with respect to

the α̂ and β̂ variablesc, and is normalized so that S
α̂,β̂

◦S
α̂,β̂

= S
α̂,β̂

. It is a

linear operator which maps a monomial of order m in α̂ and β̂ into 1/m! times

the polynomial obtained by summing all m! permutations of the monomial.

Let Pr,s(α̂, β̂) be the symmetric polynomial of order r in α̂ and of order s

in β̂. It is the sum of all the (r+s
r ) different words of length r + s for which

r of the letters are α̂ and s of the letters are β̂ . We can write the following

explicit formula for Pr,s(α̂, β̂)

Pr,s(α̂, β̂) =
1

r!s!

(
∂

∂µ

)r (
∂

∂ν

)s

(µα̂ + νβ̂)r+s . (53)

Here ν and µ are commuting variables. Let M rs be an arbitrary monomial

with unit coefficient of order r in α̂ and of order s in β̂ . Then the symmetrizer

acts on M rs as follows

S
α̂,β̂

(M rs) =


r + s

r




−1

Pr,s(α̂, β̂) . (54)

The explicit form of the symmetrized square root term appearing in the

Lagrangian is given by

S
α̂,β̂

√
1 + 2α̂ − β̂2 =

∑

r,s≥0

(−1)(r+1) (2r + 2s − 3)!! (2s)!

2s (r + 2s)! s!
Pr,2s(α̂, β̂) ,

where (−3)!! = −1 , (−1)!! = 1 .

cTo avoid confusion, we remark here that the nonabelian Born-Infeld Lagrangian in-

troduced in [22, 23] also involves a symmetrized trace. However, while in [22, 23] the

symmetrization is in the nonabelian field strength here the symmetrization is in α̂ and β̂.
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The conjecture (52) can be sharpened by stating that the solution X =

X(α̂, β̂) of equation (48) satisfies

C (X) = S
α̂,β̂

√
1 + 2α̂ − β̂2 , (55)

where C is the cyclic average operator defined as follows: C is a linear op-

erator and it maps a monomial of order m in α̂ and β̂ to 1/m times the

polynomial obtained by summing all m cyclic permutations of the mono-

mial. The normalization of C guarantees that C ◦ C = C and also Tr ◦ C = Tr .

Notice that the nontrivial statement in (55) is C(X) = S
α̂,β̂

(X) , that is the

cyclic average of X is a completely symmetrized quantity. Using the sharper

conjecture (55) it is straighforward to see that the Lagrangian (49)

L = Tr [ 1 − X + S1β ] = Tr [ 1 − C(X) + S1β ]

takes the form (52). We have no general analytic proof of (55) but we have

checked it up to order seventeen for arbitrary noncommuting variables α̂ and

β̂ using the Mathematica computer program. In the Appendix we present

an alternative expansion, which is equivalent to (51), and which is more

convenient for checking the conjecture (55) order by order by hand and by

computer.

5 Real field Strengths

We now show that our results imply the existence of a Born-Infeld theory with

n real field strengths which is duality invariant under the maximal duality

group Sp(2n, IR).

We first study the case without scalar fields, i.e. S1 = 0 and S2 = R = 1.

Consider a Lagrangian L = L(α, β) which describes a self-dual theory with

complex gauge fields. We will assume that the Lagrangian is a sum of traces

(or of products of traces) of monomials in α and β . It follows that this

Lagrangian satisfies the self-duality equations (30). This remains true in the

special case that α and β are real. That is L = L(α, β) satisfies the self-

duality equation (30) with α = αT = ᾱ and β = βT = β̄. We now recall
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that equation (30) is also the self-duality condition for Lagrangians with real

gauge fields provided that α and β are defined in the following way

αab =
1

4
F a

R F b
R , βab =

1

4
F̃ a

R F b
R , (56)

where F a
R denotes a real field strength. This implies that the theory described

by the Lagrangian LR = L(α(F a
R ), β(F a

R )) is self-dual with duality group

U(n), the maximal compact subgroup of Sp(2n, IR). The duality group can

be extended to the full noncompact Sp(2n, IR), the maximal duality group of

n real field strengths [3], by introducing the scalar fields S via the prescription

(17) which also applies to the real case provided S is symmetric [21].

In our case the Lagrangian L = Tr [1−X(α̂, β̂)+S1β] , where X(α̂, β̂) is

the solution of (48), defines a duality invariant theory because it is obtained

from the Lagrangian with auxiliary fields (32) that is explicitly self-dual.

Therefore LR = Tr [1 − X(α̂, β̂) + S1β] with the field strengths taken real is

also self-dual. Using the conjecture (55) we obtain an explicit formula for

the Born-Infeld Lagrangian with real gauge fields describing an Sp(2n, IR)

duality invariant theory

LR = Tr [ 1 − Ŝ
α,β̂

√
1 + 2α̂ − β̂2 + S1β ] .

6 Supersymmetric Theory

In this section we briefly discuss supersymmetric versions of some of the

Lagrangians introduced. First we discuss the supersymmetric form of the

Lagrangian (32). Consider the superfields V a = 1√
2
(V a

1 + iV a
2 ) and V̌ a =

1√
2
(V a

1 − iV a
2 ) where V a

1 and V a
2 are real vector superfields, and define

W a
α = −1

4
D̄2DαV a , W̌ a

α = −1

4
D̄2DαV̌ a .

Both W a and W̌ a are chiral superfields and can be used to construct a matrix

of chiral superfields

Mab ≡ W aW̌ b .
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The supersymmetric version of the Lagrangian (32) is then given by

L = Re
∫

d2θ
[
Tr (i(λ − S)χ − i

2
λD̄2(χS2χ

†) − iλM)
]

, (57)

where S, λ and χ denote chiral superfields with the same symmetry prop-

erties as their corresponding bosonic fields. While the bosonic fields S and

λ appearing in (32) are the lowest component of the superfields denoted by

the same letter, the field χ in the action (32) is the highest component of

the superfield χ. A supersymmetric kinetic term for the scalar field S can be

written using the Kähler potential (34) as described in [24].

Just as in the bosonic Born-Infeld, one would like to eliminate the aux-

iliary fields. However we have not been able to do this exactly except for

n = 1, and unlike the bosonic case we do not even have a conjectured form of

the Lagrangian without auxiliary fields. For n = 1 just as in the bosonic case

the theory with auxiliary fields also admits both a real and a complex version,

i.e. we can also consider a Lagrangian with a single real superfield. Then

we can integrate out the auxiliary superfields and obtain the supersymmetric

version of (52)

L =
∫

d4θ
S2

2W
2W̄ 2

1 − A +
√

1 − 2A + B2
+ Re

[∫
d2θ(− i

2
SW 2)

]
, (58)

where

A =
1

4
(D2(S2W

2) + D̄2(S2W̄
2)) , B =

1

4
(D2(S2W

2) − D̄2(S2W̄
2)) .

If we only want a U(1) duality invariance we can set S = i and then

the action (58) reduces to the supersymmetric Born-Infeld action described

in [14, 15, 16].

In the case of weak fields the first term of (58) can be neglected and the

Lagrangian is quadratic in the field strengths. Under these conditions the

combined requirements of supersymmetry and self duality can be used [25]

to constrain the form of the weak coupling limit of the effective Lagrangian

from string theory.
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7 Extension to Arbitrary Even Dimensions

In a space-time of arbitrary even dimension, D = 2p we define the matrices

αab =
1

p!
F a

µ1...µp
F̄ b µ1...µp , βab =

1

p!
F̃ a

µ1...µp
F̄ b µ1...µp , (59)

where F̃ a
µ1...µp

= 1/p! εµ1...µpν1...νp
F aν1...νp is the Hodge dual of F a. The dual

field strength is given by

G̃a
µ1...µp

≡ p!
∂L

∂F̄ a µ1...µp
, ˜̄G

a

µ1...µp
≡ p!

∂L

∂F a µ1...µp
.

Since
˜̃
F = (−1)p+1F and F̃G = (−1)pFG̃, for all even dimensions the matrix

α is hermitian, while β is hermitian if D = 4ν and anti-hermitian if D =

4ν + 2. It is also convenient to define

N =





α − iβ , if D = 4ν ,

α + β , if D = 4ν + 2 .

With these definitions the Lagrangian (32) gives a U(n, n) duality invariant

theory in arbitrary even dimensions.

However, if the dimension of space-time is D = 4ν +2, where ν is integer

it is convenient to make the following field redefinitions

Λ = iλ , S = iS .

The new fields have the decomposition

Λ = −Λ1 + Λ2 , S = −S1 + S2 ,

where Λ1 and S1 are hermitian and Λ2 and S2 are anti-hermitian. The minus

sign was introduced so that we have

S1 = S2 . (60)

Then S1 is positive definite and we can write S1 = R†R with R an arbitrary

nonsingular n-dimensional matrix.
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We also perform a similarity transformation on the U(n, n) duality group,

such that the transformation properties of the new fields simplify. Let us

define two 2n-dimensional matrices with the block form

IK =


 0 1

−1 0


 , IH =


 0 1

1 0


 ,

and let the matrices T and M have the block decomposition

M =


 a b

c d


 , T =


 a b

c d


 .

Then one can define the U(n, n) group as the group of matrices satisfying

either one of the two relations

M IK M † = IK , T IH T † = IH . (61)

The two definitions are related by a unitary transformation M = U−1TU
where

U =



 eiπ/4 0

0 e−iπ/4



 . (62)

The n-dimensional matrices a, b, c and d satisfy

a†d + c†b = 1 , c†a + a†c = 0 , b†d + d†b = 0 . (63)

The action of U(n, n) on the scalar fields is given by

S ′ = (aS + b)(cS + d)−1 ,

Λ′ = (aΛ + b)(cΛ + d)−1 , (64)

χ′ = (cΛ + d)χ(−cS† + d)† .

Note that the positivity of S1 is compatible with the above transformation

law of S.

The Lagrangian, written in terms of the redefined fields, takes the form

L = Re
[
Tr ((Λ − S)χ − 1

2
ΛχS1χ

† + ΛN )
]
. (65)
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Our conjecture regarding the Lagrangian without auxiliary fields is indepen-

dent of the dimension of space-time and if it holds we can eliminate the

auxiliary fields to obtain the Lagrangian

L = Tr [ 1 − S
α̂,β̂

√
1 + 2α̂ + β̂2 + S2β ] , (66)

where

α̂ = RαR† , (67)

β̂ = RβR† .

Note also that S2 appears in the last term of the Lagrangian (66), and this

is consistent with S2 and β being anti-hermitian in space-times of odd half

dimension. Also, there is a change of sign in front of the β̂2 term under the

square root in (66) due to the change in the definition of N .

If the half-dimension of space-time is odd it is consistent to take all the

fields to be real in either the Lagrangian with auxiliary fields (65), or in

the Lagrangian (66) where the auxiliary fields have been eliminated. Then

we obtain a theory invariant under an O(n, n) duality group. It was shown

in [17, 21] that the maximal connected duality group for a theory of dimen-

sion D = 4ν + 2 with n antisymmetric tensors is SO(n, n). In the analysis

of [17, 21] only infinitesimal duality transformations were considered, and

from these one can only show duality under the connected component of the

group. In [19, 20] the group O(n, n) was considered. Note that, as discussed

in Appendix B, O(n, n) has four disjoint components embedded in U(n, n)

which is a connected group. Finally, one can also obtain a theory invariant

under the O(n) × O(n) maximal compact subgroup of O(n, n) by setting

S = −1 in the Lagrangian (66).
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Appendix A

In this appendix we discuss an equivalent expansion of the Lagrangian (42)

which simplifies the order by order check of the conjecture. We set S = i for

simplicity, since S can always be reintroduced via the prescription (17). The

expansion is in terms of the variables p and q defined as

p ≡ −1

2
(α − iβ) , q ≡ −1

2
(α + iβ) . (68)

Note that the self-duality equation (30) simplifies when written in terms of

p and q

p −Lp pLp = q − Lq q Lq . (69)

Next we describe the perturbative expression of X. Let us define

χ = 2P , χ† = 2Q .

Then the equations of motion (40) for χ and its hermitian conjugate become

P = PQ + p , Q = PQ + q .

It is convenient to consider the following expansions

P =
∑

n

Pn , Q =
∑

n

Qn ,

we then have

P0 = Q0 = 0 , P1 = p , Q1 = q
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and we can solve for Pn recursively

Pn =
n−1∑

r=1

PrQn−r . (70)

Notice that since χ − χ† = 2iβ , for n > 1, Pn = Qn . Therefore we have

P0 = 0 , P1 = p , P2 = pq and, for all n > 2 ,

Pn = pPn−1 + Pn−1q +
n−2∑

r=2

PrPn−r . (71)

We also have Pn = − 1
2 n!

Xn for all n > 1. The Lagrangian is now expressed

as

L = Re Trχ = ReTr [ 2
∑

n

Pn] = Tr [ p + q + 2
∑

n≥2

Pn ] .

Using (53) and the linear change of variables (68) one can prove that

symmetrization with respect to α and β is equivalent to symmetrization

with respect to p and q. Then we can rewrite the conjectured symmetrized

square root Lagrangian as

L = Tr[1 − S
p,q

√
1 − 2(p + q) + (p − q)2 ] . (72)

We believe the explicit power series expansion of the square root in p

and q has the simple expression

S
p,q

√
1 − 2(p + q) + (p − q)2 = 1−p−q−2

∑

r,s≥1

1

r + s


r + s − 2

r − 1


Pr,s(p, q) ,

which has been checked up to order twenty in p and q with the Mathematica

computer program. Using the above expansion we can rewrite the conjec-

ture (55) in the p and q variables

C

 1 − p − q − 2

∑

n≥2

Pn


 = 1 − p − q − 2

∑

r,s≥1

1

r + s


r + s − 2

r − 1


Pr,s(p, q) .

It is this form that has been checked up to order seventeen by computer.
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Appendix B

In this appendix we show that the field S provides a global parametrization

of the coset space G/H where G is U(n, n), Sp(2n, IR) or O(n, n) and H is

the maximal compact subgroup of G. We will concentrate on U(n, n) but

the same argument applies for the other groups.

Cosets are equivalence classes of group elements g of G under right mul-

tiplication with arbitrary elements h of H

g ∼ gh .

We denote the coset containing g by gH . The maximal compact subgroup

of G is defined as

H ≡ {h ∈ G | hh† = h†h = 1} .

It is the intersection of U(n, n) with U(2n) i.e. U(n) × U(n).

Next consider the map φ : G/H → C defined by

φ(gH) = gg† ,

where

C = {s ∈ G | s† = s, s positive definite}

is the subset of hermitian positive definite group elements of G. This map is

well defined since for any two elements g and g′ in the same coset, g′ = gh

and g′g′† = ghh†g† = gg†. Furthermore this map is one to one. We show first

that the map is surjective. Let s be an arbitrary hermitian positive definite

element of G. Then

s =



 a b

c d



 =



 1 bd−1

0 1







 d−† 0

0 d







 1 0

d−1c 1



 . (73)

The last equality in (73) can be checked using the group relations (16). The

decomposition exists whenever d is invertible, but since s is positive definite

and d is the restriction of s on an n-dimensional subspace d is also positive
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definite. Note also that d† = d and (bd−1)† = bd−1 = d−1c. Then g defined

as

g =


 1 bd−1

0 1




 d−1/2

0 d1/2




satisfies s = gg†, thus the map φ is surjective. To show that the map is

also injective note that gg† = g′g′† is equivalent to g′−1g(g′−1g)† = 1. Then

h = g′−1g is an element of G satisfying hh† = 1, that is it belongs to the

maximal compact subgroup H and we have g = g′h so g and g′ belong to the

same coset.

If we define S2 = d−1 and S1 = bd−1 we can rewrite (73) as

s =



 1 S1

0 1







 S2 0

0 S−1
2







 1 0

S1 1



 .

This decomposition can also be written in terms of S2 and S = S1 + iS2 as

s = i


 0 1

−1 0


+


 0 S†

0 1




 S−1

2 0

0 S−1
2




 0 0

S 1


 . (74)

Left multiplication on the group G induces an action of the group G on the

coset space

s′ =


 a b

c d


 s


 a b

c d




†

.

Using the decomposition (74) one can easily show that the fractional transfor-

mation (19) of S is equivalent to this action. The form (74) is very convenient

since the first term is invariant under the action, while the second term only

contains S and S2 and these have the simple transformation properties (19)

and (21).

If we make all the matrices above real we obtain the parametrizations of

Sp(2n, IR)/U(n). If we change the basis with the unitary matrix U defined

in (62) and then require all the matrices to be real we obtain the coset space

O(n, n)/O(n) × O(n).

Since the map φ is injective we see that S, such that S2 is positive def-

inite, is a global coordinate on the coset space U(n, n)/U(n) × U(n). Thus
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this coset space is connected. The group U(n, n) is a principal bundle over

U(n, n)/U(n)×U(n) with a U(n)×U(n) fiber. The number of disconnected

components of a principal bundle with a connected base is at most equal

to the number of components of the fiber which in this case is one. Thus

U(n, n) is connected. Using the same argument one can show that Sp(2n, IR)

is connected while O(n, n) has at most four components. By an argument

similar to the one used for the Lorentz group one can show that there are at

least four components. Thus, as mentioned in Section 7, O(n, n) has exactly

four components.
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